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Supplementary Text 

1. Electrolytic plates geometry and efficiency 

We investigate electrolytic efficiency because the reaction is energetically costly. First, we estimate energy 
expenditure per takeoff assuming perfect efficiency. The volume of the gas collection chamber is 450 mm3, 
which implies 300 mm3 hydrogen and 150 mm3 oxygen are produced. Assuming standard temperature and 
pressure, we estimate the electrolytic plates need to disassociate 1.3e-5 moles of water. The enthalpy of 
water electrolysis is 286 kJ/mol, which implies each takeoff consumes 3.8 J of energy.  

Electrolysis reactions cannot achieve perfect efficiency due to over-potential. We can quantify the amount 
of energy spent by measuring current and integrating power expenditure over the reaction time: ܧ௠௘௔௦ ൌ

׬ ݐሻ݀ݐሻ݅ሺݐሺݒ
்
଴ ൎ ܸ ∙  is the average current and ܶ is the total ܫ ,where  ܸ  is the voltage input , ܶܫ

reaction time. In this equation, the product ܶܫ is proportional to the number of disassociated electrons, 
which further relates to net gas volume. Hence, ܶܫ is a constant for any fixed chamber volume. This 
analysis suggests energy input is directly proportional to input voltage. The lower bound of input voltage is 
1.23 V, which is the minimum reaction potential. While lowering electrolysis voltage improves efficiency, it 
reduces the average current and increases the total reaction time.  

To reduce input voltage while maintaining average current, we reduce water resistance by improving plate 
geometry (32). Specifically, we fabricate 25 interdigitated electrolytic plates of varying plate finger width 
and gap (Fig. S1F). We vary the input voltage from 0 V to 10 V and measure the corresponding current for 
every device. Then we calculate the corresponding resistance through linear fitting. Fig. S1G shows the 
measured resistance as a function of plate width and gap. We observe that resistance increases as plate finger 
width or gap increases.  

Resistance is proportional to the distance an electron travels in water, which is equal to the sum of plate 
width and gap. Fig. S1H shows a simple resistance model: ݎ ൌ ݓሺܥ ൅ ݃ሻ. Here ܥ	is a fitted constant, ݓ 
and ݃ are plate finger width and gap, respectively. This model yields good qualitative agreement with our 
measurement. The most efficient plates have width and gap of 0.1 mm, and its measured resistance is 59 Ω. 

Although plates with smaller width and gap are more efficient, they are harder to fabricate. We set both 
plate width and gap to 0.2 mm for takeoff experiments. The measured resistance of this device is 98 Ω, 
which is 66% larger than the most efficient plates. This design operates at 7.5 V and completely fills the gas 
collection chamber in 120 seconds. The total energy expenditure is 16 J, and the device efficiency is 23%. 
The energy density of lithium batteries is 1.8 J/mg, which implies that each takeoff will exhaust energy from 
approximately 10 mg of battery. The power consumption for robot hovering is 300 mW, which suggests that 
each water-air transition corresponds to an approximate flight time of 40 - 60 seconds. 

2. Effect of micro-openings on gas capture  

Gas produced by the electrolysis reaction needs to be captured by the chamber. Although there are circular 
micro-openings on its top plate, the chamber can still collect gas by utilizing surface tension effects (Fig. 
S4A). As oxyhydrogen is created, the surrounding water is displaced out of the chamber through the open 
chamber bottom. To prevent water from flowing through the micro-openings, hydrostatic pressure needs to 
be balanced by capillary pressure. The hydrostatic pressure is linearly proportional to the distance from the 
water surface. Capillary pressure is calculated using the Young-Laplace equation, which relates pressure to 
the micro-opening radius and the material contact angle with water. We impose a force balance and obtain 
the following equation: ߩ௪݄݃ݎߨଶ ൌ ߛݎߨ2 cos  ݎ ,is the height of the gas collection chamber	஼ , where ݄ߠ
is the micro-opening radius, ߛ is the surface tension coefficient, and ߠ஼ is the contact angle. We rearrange 



 
 

this equation and obtain a relation between height ݄ and micro-opening radius ݎ: ݄ ൌ ଶఊ ୡ୭ୱఏ಴
ఘೢ௚௥

. Fig. S4B 

shows this relation for the current chamber design. 

This relation offers guidelines for robot design and fabrication. We can interpret ݄ as the maximum 
height of the gas chamber. The chamber cannot capture additional gas if its chamber height exceeds ݄ since 
gas will escape through the micro-openings. We can increase the maximum height ݄ by increasing the fluid 
surface tension coefficient, reducing the contact angle, or reducing the opening radius. In our experiment the 
gas chamber height is 5.75 mm. According to the previous equation, it suggests that the opening radius to be 
smaller than 500 μm. Here we set the opening radius to 34 μm to satisfy this constraint. We choose the 
opening radius to be as small as possible such that less gas leaks from the chamber during the initial gas 
collection process.  

3. Robot stability near the water surface 

The robot needs to maintain upright stability as its wings gradually emerge from water. If the robot body 
tilts significantly in this process, gas leaks via the chamber’s uncovered bottom face and the buoyant force 
decreases.  

Surface tension forces destabilize the robot along the body pitch and roll axes. The definition of robot 
pitch, roll, and yaw axes is given in Fig. S11A. Fig. S5A illustrates body pitch instability in which the 
surface tension force creates a counter-clockwise torque.  Gas leaks from the chamber’s bottom face and 
the robot is unable to generate sufficient buoyancy force. Fig. S5B shows an image from a related 
experiment illustrating pitch instability. Pitch instability can be resolved by placing a balance beam along 
the pitch axis.  

The robot is also unstable along the roll axis due to similar surface tension effects (Fig. S5C). Here one 
robot wing pushes through the water surface but the other one remains fully submerged (Fig. S5D). We 
place balance beams in both pitch and roll axes to resolve pitch and roll instability. The surface tension force 
on the balance beams stabilizes the robot while the buoyancy force pushes both wings out of the water (Fig. 
S5E). Fig. S5F shows successful wing water-air transition after installing balance beams.  

4. Effect of micro-openings on takeoff  

Micro-openings on the chamber top plate lower the detonation pressure. Robot takeoff experiments are 
expensive because large detonation pressures can lead to severe robot damage. We simplify takeoff 
experiments by replacing robot halves with dummy weights. We further replace titanium balance beams 
with carbon fiber ones due to ease of fabrication. The device in Fig. S6 weighs 170 mg and has an identical 
chamber as the real robot.  

Fig. S6A illustrates device takeoff without micro-openings. Large detonation pressures crack the 
chamber’s top plate and all balance beams break during takeoff. The vertical takeoff speed is 2.0 m/s. Fig. 
S6B shows device takeoff with micro-openings. The vertical takeoff speed reduces to 1.4 m/s and the 
chamber is undamaged. Fig. S6C shows a time image sequence of the same experiment during the early 
phase of takeoff. Water is ejected from the micro-openings within 0.5 ms of ignition. The openings release 
detonation energy and reduce takeoff speed.  

We repeat the chamber explosion experiments five times. For the case of completely sealed chambers, 
there is noticeable damage in each experiment. In all five trials, the carbon fiber balance beams break in 
ways similar to the case shown in Fig. S6A. In two trials, the chamber’s side walls are blown apart during 
takeoff. In the rest of the experiments, we observe cracks and deformation on the chamber’s top plate and 
side walls. The sealed chambers cannot be reused after an explosion.  



 
 

For the case of chambers with micro-openings, we observe significantly less damage. The chamber 
balance beams remain undamaged in three out of the five experiments. The chamber is undamaged in four 
out of the five experiments. There is one experiment where the chamber is slightly damaged; there is a small 
crack on the chamber’s side piece and the local epoxy sealant is removed by the explosion. 

The first two columns of Fig. S6, D and E compare the chamber’s initial horizontal and vertical takeoff 
speeds. The red dots show the takeoff speed of each individual experiment and the blue circles and lines 
show the mean and standard deviation. The horizontal speed (Fig. S6D) is approximately six times smaller 
than the vertical takeoff speed (Fig. S6E).  With the micro-openings, the chamber’s mean vertical takeoff 
speed is reduced by 57%. 

Next, we install chambers with micro-openings on a robot and perform five experiments. Here the balance 
beams are made of titanium T-beams. The robot remains undamaged in three out of the five trials. In one 
trial, the tabs of the titanium chamber top piece are detached from the side piece slots. The local epoxy 
sealant is removed by the explosion. In the other trial, one buoyant outrigger is blown away from the balance 
beam upon takeoff. In these two cases, the damage is minor and they can be easily repaired. Finally, we 
conduct one takeoff experiment using a robot with a sealed chamber. As described in the main text, the robot 
is severely damaged in the experiment. We do not repeat this experiment because robot and chamber 
fabrication is costly.       

The last two columns of Fig. S6, D and E compare the robot’s initial takeoff speed. Compared to the case 
with a sealed chamber, the mean horizontal and vertical speeds of the robot with chamber openings are 
reduced by 83% and 37%, respectively.   

We further quantify the influence of micro-openings on detonation pressure. Unlike previous experiments, 
here we reinforce the sealed chamber with a 250 μm thick FR4 top plate so the chamber can survive the 
detonation. This extra reinforcement plate weighs 20 mg. We place a Kistler 601B1 pressure sensor beneath 
the robot chamber to measure pressure at the ignition location.  

Fig. S7, A and B compare ignition pressure and takeoff velocity of robots with or without micro-openings. 
Measurements shown in Fig. S7, A and B resemble typical underwater explosion profiles in that a primary 
pressure peak is followed by an oscillatory tail (33). Fig. S7, A and B show that the presence of 
micro-openings reduces the maximum pressure by 3.4 times and increases the initial pressure pulse width by 
39%.  

We observe that the robot without micro-openings has a significantly lower takeoff speed despite having a 
higher maximum pressure (movie S9, and the red curves in Fig. S7, A and B). This observation differs from 
unreinforced explosion experiments in which the robot with a fully sealed chamber has a higher takeoff 
speed. In unreinforced explosion experiments, the detonation pressure cracks the fully sealed chamber and 
the cracks serve similar functions as the micro-openings.  

Without cracks or micro-openings, the initial positive pressure pulse width decreases. Fig. S7, A and B 
mark four critical events along the pressure profile: ignition, start of pressure rise, pressure peak, and 
pressure drop. Fig. S7, C and D show the corresponding images of both experiments. The red circle in Fig. 
S7C shows that the chamber without micro-openings had not fully emerged from water surface when 
pressure fell negative. Consequently, the robot decelerates due to negative pressure caused by cavity 
contraction. In contrast, the red circle in Fig. S7D shows that the chamber with micro-openings completely 
exited the water surface before the pressure became negative. Consequently, cavity contraction has no effect 
on robot takeoff. In summary, the presence of micro-openings improves robot takeoff by reducing peak 
combustion pressure and increasing initial pressure pulse width. 

We further relate robot takeoff velocity to the pressure measurements. We let ݉௥ denote the robot mass, 



 
 

 ௘௫௜௧ denote the robot velocity after the robot completelyݒ ,௪ denote the momentum of the displaced water݌
exits the water surface and ݐ௘௫௜௧ denotes the corresponding time. The impulse-momentum equation gives: 

      
exitt

r exit w expl visc drag surf g

o

m v p F F F F F dt      , (2) 

where the total force is contributed by the explosion, viscous drag, pressure drag, surface tension, and the 
robot’s weight. Each component is calculated as: 

 expl tF PA , (3) 

 
1

visc wF A u
t




  , (4) 

 
1

2drag D tF C u u A  , (5) 

 2surfF L  , (6) 

 gF mg  , (7) 

Here ܲ and ݑ are instantaneous pressure and velocity. The values of other terms are documented in table 
S2. By comparison, ܨ௘௫௣௟	is on the order of several Newtons within the first millisecond and it dominates all 
other components so that the takeoff velocity can be approximated as:  

 
1 exitt

exit expl w
r o

v F dt p
m

 
   

 
 . (8) 

Based on the high-speed videos, we estimate ݐ௘௫௜௧ = 1.1 ms and 2.3 ms for the robot with or without 
chamber micro-openings, respectively. The corresponding robot takeoff velocities are 3 m/s and 1 m/s, 
respectively. Having measured other terms in the previous equation, we solve for the momentum of the 
displaced water. We estimate ݌௪ = 2 mN s and 7 mN s for the case with or without micro-openings. In both 
cases the robot takeoff momentum is within 10% of the net impulse. This result shows that most of the 
impulse is absorbed by the water.  

5. Derivation of dynamical model 

5.1. Notations 

We use the following notations for the derivations: 

 We use bold letters to denote vector quantities and hat to denote unit vectors 0  denotes a vector 
of all 0 s. For the special unit vector that's parallel to a particular coordinate axis, we write the 
vector as ie  without a hat. It means the vector is 1 at the thi  entry and 0 everywhere else.  

 We use upper case letters to represent matrix quantities. Specifically, we use R  to denote a 3 3  
rotation matrix.  



 
 

 For vectors 3Rv , 3Ra , we let Sv  denote the skew symmetric matrix generated by v   

such that S  va v a .  

5.2 Robot dynamical model 

We formulate a time varying model that has 10 degrees of freedom. The robot body has six translational 
and rotational degrees of freedom denoted by ,  ,  ,x y z ,  ,  and    . Here ,  ,  ,x y z are the translational 
degrees of freedom and  ,  ,  and    are Euler angles following the roll, pitch, and yaw convention. Fig. 
S11A defines the robot body and wing coordinate axes. The robot wing kinematics each have two degrees of 
freedom relative to the robot body for a total of four degrees of freedom corresponding to the robot's left and 
right wings. Here i  and i  denote wing stroke and pitch angle, respectively. The subscript i  

distinguishes the left and the right wing. These ten generalized coordinates are defined as a column vector:  

 [ , , , , , , , , , ]T
r r l lx y z       q   (9) 

Here we denote right and left wing by the abbreviations r and l, respectively.  

5.2.1 Rigid body dynamics 

We adopt the matrix form of Lagrangian mechanics to derive the equation of motion (34): 

 
.. . .

( ) ( , ) ( )D C  q q q q q g q τ . (10) 

The inertia matrix D  is given by the sum of contributions from body, right and left wing:  

 , , , ,
{b,r,l}

{ }T T T T
v i i i v i w i i i w i

i

D J R MR J J R IR J


  , (11) 

where M and I are the mass and moment of inertia matrix, respectively. Here mass is a tensor quantity to 
account for geometry-dependent added mass effects. Ri is the corresponding rotation matrix from the center 
of mass reference frame to the inertial system. Jv,i and Jw,i are velocity and angular velocity Jacobians. The 
Christophol matrix elements are obtained from the partial differentials of the inertia matrix:  

 
. .

1 1

1
( ) { }

2

n n
kj ijki

kj ijk i i
i i j j k

D DD
C C q q

q q q 

 
   

   q . (12) 

The jth component of the gravity vector is given by: 

 j
j

P
g

q





, (13) 

where P is the total potential energy. The generalized force vector τ  is given by the matrix product of the 
partial displacement matrix and the external force vector. The dimensionalities of these quantities are given 
by: 10 10D R  , 10 10 ,C R   10 1,g R   10 1.R τ  The equations of motion form a system of coupled 
ordinary differential equations. We solve this system numerically through the matlab function ode45.  



 
 

Next, we derive the velocity Jacobians and angular velocity Jacobians of the robot body, its right and left 
wing. The body velocity Jacobian Jv,b transforms velocities with respect to the generalized coordinate to 
velocities with respect to the inertial coordinate. Here we have 3 10

,v bJ R   and it is given by:  

 ,

| | | | | | | | | |

| | | | | | | | | |
v bJ

 
   
 
 

1 2 3e e e 0 0 0 0 0 0 0 , (14) 

The body angular velocity Jacobian is given by 

 ,

| | | | | | | | | |

,

| | | | | | | | | |
w bJ R R R  

 
   
 
 

1 2 30 0 0 e e e 0 0 0 0  (15) 

where R  and R  are rotation matrices with respect to the   and   axes. In the next sections we will 

use the rotation matrices R , rR ,  lR , rR , and lR . These are rotations with respect to the axes 

defined in Fig. S11B. 

5.2.2 Body and wing displacement vectors 

The right and left wing velocity and angular velocity Jacobians contain a number of displacement vectors 
that define the distance between the robot center of mass, wing root, and wing center of mass. These vectors 
are defined as: 

 rbd : displacement from the body center of mass to the right wing center of mass 

 lbd : displacement from the body center of mass to the left wing center of mass  

 rwd : displacement from the right wing root to the right wing center of mass 

 lwd : displacement from the left wing root to the left wing center of mass  

These displacement vectors can be calculated from a sequence of translations and rotations from the 
default robot configuration. Let rbr , lbr , rwr , and lwr  be the corresponding robot parameters in the fixed 

frame. The transformation is given by: 

 ( )rb b rb rw b r r rwR R R R   d r r r , (16) 

 ( )lb b lb lw b f l l lwR R R R R   d r r r , (17) 

 rw b r r rwR R R d r , (18) 

 lw b f l l lwR R R R d r , (19) 

where bR  is the body rotation matrix:  

 bR R R R   . (20) 



 
 

The rotation matrix fR  accounts for the 180° rotation between the left wing coordinate and the body 

coordinate.  

5.2.3 Jacobian matrices of the right wing 

Fig. S11A shows the coordinate definition of the right wing with respect to the body frame. The wing 
rotates with respect to the stroke axis zr  and then the pitch axis yr. The cumulative rotation matrix is given 
by  

 r b r rR R R R  , (21) 

The right wing velocity Jacobian is given by  

 
1 2 3 3 2, 1 2 3

| | | | | | | | | |

| | | | | | | | | |

v r rb rb rb b rw b r rwJ R R S R S S R S R R S   

 
 

  
 
 

e e e e ee e e d d d d d 0 0 . (22) 

The right wing angular velocity Jacobian is given by  

 , 1 2 3 3 2

| | | | | | | | | |

.

| | | | | | | | | |
w r b b rJ R R R R R R   

 
   
 
 

0 0 0 e e e e e 0 0  (23) 

5.2.4 Jacobian matrices of the left wing 

Fig. S10A also shows the coordinate definition of the left wing with respect to the body frame. The left 
wing rotates with respect to the stroke axis zl and then the pitch axis yl. The cumulative rotation matrix is 
given by: 

 l b f l lR R R R R  . (24) 

The left wing velocity Jacobian is given by  

1 2 3 3 2, 1 2 3

| | | | | | | | | |

| | | | | | | | | |

v l lb lb lb b cf lw b cf l lwJ R R S R S S R R S R R R S   

 
 

  
 
 

e e e e ee e e d d d 0 0 d d , (25) 

The left wing angular velocity Jacobian is given by  

 , 1 2 3 3 2

| | | | | | | | | |

| | | | | | | | | |
w l b cf b cf lJ R R R R R R R R   

 
   
 
 

0 0 0 e e e 0 0 e e . (26) 

5.3 A time varying aerodynamic model 

Here we generalize a previous quasi-steady blade element model (35) to account for body movement and 



 
 

rotation. We aim to quantify the influence of robot kinematic parameters on swimming stability and speed.  

In equation 10 the generalized force τ  relates to net external force, which consists of aerodynamic 
forces, flexure viscoelastic forces, and actuator driving forces: 

 ext aero flexure act  F F F F . (27) 

The aerodynamic force consists of contributions from the robot body and left and right wings. We describe 
the modeling of these external forces in the following sections.  

5.3.1 Aerodynamic model of the robot body 

Fig. S11C illustrates the robot body and wing centers of mass, and the corresponding aerodynamic forces. 
First, we consider the drag force on the robot body. Since the body center of mass does not coincide with its 
geometric center, we separately model the damping force and torque with respect to its center of mass.   

The force on the robot body is predominately contributed by pressure because the corresponding Reynolds 
number is approximately 100. The drag force has quadratic dependence on body velocity:  

 
1

|| ||
2d d b bC S  F v v , (28) 

where bv  is the instantaneous body velocity and S  is the frontal area normal to bv . The damping 

torque with respect to the body center of mass is given by  

 21
|| ||

2d WC rS Γ ω ω , (29) 

where ω  is the instantaneous angular velocity, WS  is the total wetted area, and r  is the mean moment 

arm. dC  and C  are the body drag and torque coefficients.   

Since water density is approximately 900 times that of air, it is important to consider buoyancy and added 
mass effects for aquatic locomotion. Buoyancy accounts for nearly 25% of the robot weight. Here the 
buoyancy force is given by: 

 ,b b dispgVF z , (30) 

where dispV  is the volume displaced by the robot body.  

Added mass effects arise because a moving robot body accelerates the nearby fluid. Specifically, this term 
depends on body surface area and fluid density. With respect to the inertial frame, we model added mass 
contribution as  

 

0 0

0 0

0 0

x

add y

z

lS

M lS

lS






 
   
 
 

, (31) 

where xS , yS and zS  are the corresponding frontal areas,   is the fluid density and l  is a length scale. 



 
 

l  is a fitting parameter and we set it to be the robot width.   

5.3.2 Blade element quasi-steady method 

We adopt the classical quasi-steady blade element model and account for wing root movement from body 
motions. Following the blade element approach, we divide each wing into N  chordwise panels and 
approximate each panel as translating on a 2D plane. Fig. S11D illustrates the translating and pitching 
motion of a chordwise panel. The instantaneous stroke plane is not orthogonal to the z  axis due to robot 
oscillation.  

First, we calculate each panel's instantaneous leading edge velocity using the wing velocity Jacobian:  

 
.

le vJv q , (32) 

where lev  denotes the leading edge velocity. Next, we compute the normalized wing chord vector ĉ  using 

rotation matrices derived from the previous chapter. The panel angle of attack is given by  

 1cos ( )AoA 
 c v , (33) 

where  v  is the normalized component of lev  orthogonal to the wing span. Given the local angle of 

attack, we compute local lift and drag coefficients following Dickinson's formula (15): 

 0 sin 2L LC C AoA , (34) 

 0 0 cos 2
2 2

D Dmax Dmax D
D

C C C C
C AoA

 
  , (35) 

where the coefficients are given by 0 1.8,LC   0 1.8,LC   0 0.4,DC   and 3.4.DmaxC   Then we compute 

the direction of the lift and drag forces on the local panel:  

 ,ˆL z bf w , (36) 

 
D  f v . (37) 

Here ,ˆ z bw  is the unit normal vector of the instantaneous stroke plane. These definitions are adopted from 

the aeromechanical model developed by Whitney et al (35). Finally, we compute the total lift and drag 
forces on the wing by summing the contribution from each panel: 
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Here ( )ic r  represents the local chord length of the thi  panel. The aerodynamic force contribution from the 

left and the right wing can be separately computed through invoking equations 38 and 39. We do not include 



 
 

contribution from rotational circulation and added mass because their force coefficients are not quantified in 
previous studies. Inclusion of these terms may lead to unnecessary over-fitting.   

The aerodynamic lift and drag forces, together with other external forces, need to be projected onto the 
generalized coordinates to obtain the generalized forces. The thj  component of the generalized force τ  
can be calculated as:  

 ,
k

j ext k
k jq

 
 

 x
f , (40) 

where kx  is the center of pressure location of the thk  panel, and ,ext kf  is the total external force on the 
thk  panel. To evaluate this equation, we need to estimate the center of pressure for each wing panel and 

integrate across the wing span. The center of pressure location can be computed given the local wing chord 
and a non-dimensionalized center of pressure copr . The relationship between copr  and angle of attack is 

given in a previous study (21):  
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Here   is a positive fitting parameter related to the wing geometry.   

While the generalized force vector can be computed easily through equation 40, it does not offer a 
straightforward physical interpretation. The torque on the robot center of mass due to the fluid forces on the 
wing is given by:  
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where ,p ir  is the displacement from robot center of mass to the local center of pressure.  

5.4 Forces from wing flexures and actuators 

We model the wing flexure as a torsional spring with viscous damping. The torques exerted by the wing 
hinges along wing pitch axes are given by: 

 
.

r h r h rK D     , (43) 

 
.

l h l h lK D     , (44) 

where hK  is the stiffness and hD  is the viscoelastic damping. Both parameters are dependent on the wing 

hinge geometry.  

The piezoelectric actuator and robot transmission can be modeled as a sinusoidal torque source (26). The 
driving frequency and torque amplitude depend on the input electric signal. The input torque along the wing 
stroke axes are given by:  



 

 , cos(2 )r act rA ft  . (45) 

 , cos(2 )l act lA ft  . (46) 

The robot transmission also exerts restoring and damping torque along the stroke axes:  

 
.

,r trans t r t rK D     , (47) 

 
.

,l trans t l t lK D     , (48) 

where tK  and tD  are robot transmission stiffness and visoelastic damping coefficients.  

6. Robot tracking 

The recorded swimming videos show noticeable body pitching during robot locomotion. Here we quantify 
the amplitude of body pitching through post-processing the videos. We manually select two images of 
maximum body pitch in opposite directions. A number of tracking points are manually labeled given the 
recorded images. These are the 2D projection of specific reference points onto the camera image plane. 
Since there is an accurate geometrical model of the robot, we can estimate robot orientation by solving a 
constrained optimization problem. Specifically, the problem can be formulated as:  

 (1:2,:) 2
, ,

arg min | | ( , , ) || ,i i
i

R
  

    s r  (49) 

where 2 3
(1:2,:)R R   is the top two rows of the rotation matrix:  

 R R R R   . (50) 

3
i Rs  is the displacement of the thi  reference point with respect to the robot center of mass, and 2

i Rr  

is the corresponding measured location on the image. Here the measured location ir  can be calculated from 

the pixel values ip  through subtracting the centroid pixel values and then scaling by the appropriate length 

scale. This simple operation is given by  

 ( )i i cs r p x , (51) 

The robot centroid cx  is identified manually and the scaling constant s  is obtained by measuring the 

aquarium dimensions from the image.  

Equation 49 is solved using matlab's constrained optimization function fmincon . We impose constraints 
on the rotation angles such that , ,       . Fig. S11E labels the robot center of mass and several 
tracking points. Fig. S11F shows the numerical solution of the robot model projected onto the image plane.  

7. Simplified model of robot passive upright stability 

7.1 Passive upright stability during unpowered freefall 



 
 

As we have discussed in the main text and the supplement, the robot is passively upright stable during 
unpowered freefall because its center of mass is lower than its center of pressure. This is a well-known fact 
in flight vehicle design. Here we give a simple proof.  

We define the robot as passively upright stable if it can recover from small perturbations in the body 
pitch or roll axes. Intuitively, the drag force that acts above the center of mass gives a restoring torque that 
stabilizes the robot during freefall. Since the stability conditions for the pitch and roll axes are very similar, 
we give a simple derivation for the pitch axes stability condition. Fig. S12A illustrates the free body diagram 
of the robot during freefall. Using the Lagrangian formulation, we can write out the equation of motion 
during freefall: 

 2
1 2sinI c z r c        , (52) 

Here, ܫ	is the robot pitch-wise moment of inertia, and ܿଵ	and ܿଶ	are positive damping coefficients. The 
moment arm ݎ is the distance between robot center of mass and its center of pressure. The variables ߠ and 
 we linearize the ,ߠ	are the body pitch and vertical descent motion, respectively. For a small angle 	ݖ
equation as: 

 2
1 2 0I c z r c        , (53) 

For simplicity, we first assume that ݖሶ is a constant that equals the terminal velocity. Based on this 
assumption, we can define two positive constants		ߙଵ ൌ ܿଵݖሶଶݎ , and ߙଶ ൌ ܿଶߠ଴ሶ . Equation 53 can be 
re-written as:  

 1 2 0I        , (54) 

We can show this dynamical system is stable by finding a Lyapunov function ܸ	and showing its derivative 
is strictly negative. Here we can let:   
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V I    , (55) 

Taking the derivative and substituting equation (54) we find that: 

 2
1 0V     . (56) 

This derivation shows the system is stable. Furthermore, the simplification that ݖሶ	is a constant can be 
relaxed in a slightly more involved derivation. In the early part of the free fall, we can model the motion as 
ሶݖ ൌ െ݃ݐ. Consequently, equation 54 becomes a time dependent linear system:  

 2 0a bt      , (57) 

where ܽ  and ܾ  are two positive constants. This equation can be solved analytically through series 
expansion. The general solution is:    
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Here ܨଵ
ଵ is the hypergeometric function, ܥଵ and ܥଶ are two coefficients depending on the initial condition. 

Note that the third parameter in both hypergeometric functions is imaginary, hence that part is oscillatory. 



 
 

Since		ܽ and ܾ are positive, this solution is dominated by the exponential decay. Consequently, the angular 
deviation gradually approaches 0. The derivation for the roll axis stability is nearly identical. This shows that 
the robot remains passively upright during landing.   

7.2 Passive upright stability during open-loop swimming 

Through experiments and simulations, we find that when the robot operates at appropriate frequencies, it 
is passively upright stable during swimming. This is an important and unintuitive finding. It is practically 
important because our motion tracking system does not operate in water due to refraction of the infrared 
illumination. Consequently, closed-loop feedback control is not possible with the existing setup. Therefore, 
the robot needs to be stable when driven open-loop. This result is unintuitive because the robot is 
intrinsically unstable when flying in air. It requires closed-loop feedback control or passive dampers for 
stability. In this section, we show that passive dampers are not needed if the driving frequency is chosen 
appropriately.  

We say that the robot is passive upright stable if it can recover from small perturbation from its roll and 
pitch axes. In our simulation, the robot is unstable if any of the two conditions are violated: 

1. The maximum pitch or roll amplitudes must be smaller than 90°.  
2. The robot center of mass must ascend upward with a positive mean speed.  

The first condition ensures the robot does not tip over and swim downward. The second condition ensures 
the robot can lift off from underwater surfaces. Otherwise, it rocks back and forth. In our experiments, a 
robot that cannot lift off eventually tips over because its legs collide with the ground. Quantifying the 
stability condition requires a dynamical model that includes body-wing coupling and fluid drag on the robot 
body. Details about the full model derivation are given in the supplemental materials, section 5. Comparison 
of the full model with experiments is shown in Fig. 3. Here, we describe a simplified model that gives 
intuition on why the robot can be stable in water. This model aims to illustrate the trend of decreasing body 
pitch as the flapping frequency increases by considering body-wing coupling and fluid drag on the robot 
body. It does not give a proof of swimming stability.  

Compared to flying in air, the robot experiences greater body-wing coupling and larger drag on the robot 
body when in water. These factors are crucial for stability. In air, the robot body experiences negligible 
oscillations so the aerodynamic damping on the robot body is very small. In water, the robot experiences 
larger oscillations and the water drag is much larger because the density of water is much higher. In addition, 
the body oscillation causes the wing root to become non-stationary and this coupling can influence stability. 
Fig. S12B shows a free body diagram and derives a simplified model for robot pitch.   

In Fig. S12B, the drag force from the wing ሺܨௐሻ destabilizes the robot. The first stabilizing factor is the 
body drag (ܨ஻):  
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2 2B w D B w D BF C S u u C S        . (59) 

Here ߩ௪	is the density of water, ܥ஽,஻ is the drag coefficient of the robot body, ܵ is the body surface 
area, and ݑ	is the body motion. We can rewrite this equation in terms of the pitch motion ߠሶ  and define a 
new drag coefficient 	ܥሚ	஽,஻. This body drag contribution is much larger than it is in air because ߩ௪ >> ߩ௔௜௥. 
This term alone cannot stabilize the robot – it delays the transition to tipping over.  

Fig. S12C illustrates the second factor – the coupling between the robot body and the wing. When the 
wing moves at a large velocity, the body rotates at a large velocity in the opposing direction. This body 
movement effectively slows down the robot wing speed and reduces the drag force. To capture this effect, 
we approximate the drag force as:  
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where ܨௐ	is drag force on the wing, ܴ	is the distance from wing root to a local wing chord, ܴ′ is the 
distance from robot center of mass to the local wing chord, ߙሶ 	 is the wing stroke speed and ߠሶ  is the body 
pitching speed. Instead of integrating along the wing span, we make an approximation by setting ܴ and ܴ′ 
to the wing span and mean wing chord length. This simple model ignores wing shape and passive pitching 
influence on the drag coefficient. In this equation, the wing stroke motion ߙ	 is the driving term:  

 0 sin(2 )ft   . (61) 

Since the robot center of mass is lower than its center of pressure, buoyancy force creates a restoring 
torque: ߬஻ ൌ ௕,௕݈ܨ sin  ௕,௕ is the buoyancy force and it accounts for 25% of the robot weight. Theܨ where ,ߠ
symbol ݈ is the distance from the robot center of mass to its center of pressure. Finally, we introduce a 
constant torque offset that is the result of manufacturing imprecision. We let ߬௢	denote a constant pitch 
disturbance. 

In summary, the differential equation for swimming stability is given by:  

 0 1 2 , 0' ( ' ) sin 0b bA A R R R R A F l                    . (62) 

Here the parameters ܣ௢, ,ଵܣ  ,௕,௕, ݈, ߬௢ are coefficients associated with the robot geometry, inertiaܨ	 ,ଶܣ
and disturbance. We set the parameters to be ܣ௢ ൌ 1 ൈ 10ିଽ	kgm2,		ܣଵ ൌ 2 ൈ 10ିସ	kg, ܣଶ ൌ 5 ൈ 10ି଼ 
kgm2, ܨ௕,௕ ൌ 0.2	mN, 	݈ ൌ 2 ൈ 10ିଷ	m and ߬௢ ൌ 1 ൈ 10ି଻	Nm. Fig. S12, D and E compare two sample 
simulations, one at 5 Hz (red) and one at 10 Hz (green). The pitch amplitude is reduced by a factor of three 
when the flapping frequency reduces from 10 Hz to 5 Hz. Fig. S12F further shows that pitch amplitude 
(solid line) decreases monotonically as flapping frequency increases. Furthermore, due to the bias torque 
disturbance, the simulations show that there is a non-zero mean pitch offset (dotted line). The mean pitch 
bias also decreases as flapping frequency increases. This simple model illustrates that body pitching 
amplitude and pitch offset decrease as flapping frequency increases. While it is not a proof for swimming 
stability, it gives intuition on the contribution from the body damping and body-wing coupling.  

 



 
 

Supplementary figure 

 

Fig. S1. Material selection of sparker and electrolytic plates, and plate geometry influence on water 
resistance during electrolysis. (A) A new stainless steel sparker tip. (B) A shorted stainless steel sparker tip 
after three ignitions. The sparker tip changes color due to the heat associated with sparking. The red circle 
highlights the shorted region. (C) A new pair of copper electrolytic plates. (D) A pair of electrolytic plates 
after 120 seconds of reaction. Most of the copper on the anode disappears. (E) Copper oxide growth on the 
anode. (F) Design of interdigitated electrolytic plates. Plate finger width (w) and gap (g) are changed while 
the total plate area is kept constant. (G) Measurement of water resistance as a function of plate width and 
gap. Each red circle represents a data point. (H) Modeling of water resistance as a function of plate width 
and gap. G and H have the same color scale.  

 



 
 

 

Fig. S2.  Swimming demonstration of the new robot design. (A) Composite image of the robot swimming. 
The robot swims toward the water surface at 2 cm/s. The robot is switched off after 8 seconds and it sinks 
passively down to the aquarium bottom. B) Illustration of robot pitching when flapping at 9 Hz. The pitch 
amplitude is smaller than 5°. 



 
 

 

Fig. S3. Robot water entry from different orientations. (A) The robot lands on the water surface with its 
wings parallel to the surface. (B) The robot lands on the water surface with its wings at approximately 45 
degree to the surface. (C) The robot lands on the water surface inverted. The scale bar in all images is 1 cm.  

 



 
 

 

Fig. S4. Surface tension influence on height of the gas collection chamber. (A) Illustration of gas 
collection in a chamber with openings on the top plate. The weight of a water column of radius r and height 
h needs to be smaller than the surface tension force along the opening. (B) Maximum gas chamber height as 
a function of micro-opening radius. 

 

 



 
 

 

Fig. S5. Robot stability near the water surface. (A) Illustration of the robot tilted along the body pitch axis 
beneath the water surface. (B) Picture of the robot tilted along the body pitch axis. (C) Illustration of the 
robot tilted along the body roll axis after it is stabilized in the pitching axis. (D) Picture of the robot tilted 
along the body roll axis at the water surface. (E) Illustration of a stabilized robot with balance beams. (F) 
Picture of the robot with its wings completely emerged from the water surface.  



 
 

 

Fig. S6. Influence of micro-openings on takeoff speed. (A) Takeoff of a chamber without micro-openings. 
The chamber cracks open and its supporting balance beams break apart. (B) Takeoff of a chamber with 
micro-openings. (C) Initial takeoff images of B. Water exits the chamber through micro-openings before 
chamber gains momentum. (D) Chamber and robot takeoff speeds parallel to the water surface. (E) Chamber 



 
 

and robot takeoff speeds perpendicular to the water surface. In D and E we report five trials for chambers 
with or without openings and the robot with openings. We only report one trial for the robot without 
openings due to damage from explosion. The blue circles and lines represent mean and standard deviation.   

 

Fig. S7. Influence of micro-openings on ignition pressure and takeoff speed. (A) Pressure distribution 
and takeoff velocity of a robot without micro-openings. The reinforced chamber survives the explosion. (B) 
Pressure distribution and takeoff velocity of a robot with micro-openings. Shaded regions in A and B 
represent the net impulse before the robot exits the water. Numeric labels in A and B indicate the times of 
ignition (1), start of pressure rise (2), peak pressure (3), and first transition to negative pressure (4). (C) 
Image sequence of robot takeoff corresponding to numeric labels in A. The red ellipse illustrates that the 
chamber has not exited the water surface when ignition pressure becomes negative. (D) Image sequence of 
robot takeoff corresponding to numeric labels in B. The red ellipse illustrates that the chamber has exited the 
water surface when ignition pressure becomes negative. 



 
 

 

Fig. S8  Comparison of flapping kinematics before and after impulsive takeoff. The first and third 
columns show the robot flapping kinematics before impulsive takeoff. The second and fourth columns show 
the robot flapping kinematics after impulsive takeoff. The driving frequency is 265 Hz and the time scale is 
normalized to 1 flapping period.  
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Fig. S9. Robot liftoff demonstration before and after impulsive takeoff. Before impulsive takeoff, the 
robot rises 1.5 cm during 0.3 seconds of test flight time. After impulsive takeoff and without any mechanical 
tuning, the robot rises 1.2 cm during 0.3 seconds of test flight time.   

 

 



 
 

   

Fig. S10. Experimental setup. (A) Robot swimming experimental setup. The aquarium dimensions are 30 
cm x 15 cm x 15 cm. (B) Robot takeoff and landing experimental setup. The aquarium radius is 7.5 cm.  

 

 

 

 

 

 

 

 

 

 

 

 



 
 

 

Fig. S11. Dynamical model and motion tracking method. (A) Coordinate system definition of the body, 
the left wing, and the right wing reference frame. (B) Illustration of rotational axes, robot center of mass and 
geometric center. (C) Illustration of aerodynamic forces and torques. (D) Definition of lift and drag 
directions given instantaneous stroke velocity and angle of attack. (E) Raw image and manual tracking of 
robot centroid and motion tracking markers. (F) Fit of the model and its projection onto the camera image 
plane.  

 

 



 
 

 

Fig. S12. Robot stability during freefall and swimming. (A) Illustration of passive upright stability during 
free fall when the robot center of mass is lower than its center of pressure. The aerodynamic drag force 
stabilizes the system. (B) Illustration of robot swimming stability. The drag force on the robot body (FB) is 
crucial for passive stability in water. (C) The coupling between wing and body. C-i) The robot body has a 
rotational speed that is opposite to the wing stroke velocity (highlighted in red). This coupling effectively 
reduces the wing stroke velocity, which reduces the destabilizing drag force from the robot wing (FW). C-ii) 
This coupling is the strongest during midstroke when the robot body has the largest rotational speed, and it 
becomes smaller as the body rotational speed is reduced at larger ߠ. (D) Simulation of body pitching when 
the flapping frequency is 5Hz. (E) Body pitching decreases a factor of three when the flapping frequency 
increases to 10 Hz. (F) Body pitch amplitude and pitch bias decrease monotonically as flapping frequency 
increases.  
  

 

 



 
 

Supplementary tables 

Table S1. Properties of robot components 
Component 
name 

Quantity 
per robot 

Mass 
(mg) 

Material Functionality 

air frame 2 15 carbon fiber provide structural support 
actuator 2 25 piezo-electric 

ceramic, carbon 
fiber, 
aluminum oxide

power the robot wings 

transmission 2 4 carbon-fiber, 
polyimide

amplify actuator bending to wing flapping 

wing, wing 
hinge 

2 1 carbon-fiber, 
polyimide, polyester

generate propulsive forces in air or water 

connection 
pieces 

1 10 carbon fiber affix two identical robot halves, attach other 
robot components   

gas 
collection 
chamber 

1 33 titanium, carbon 
fiber, polyimide 

capture gas produced by electrolysis 
reaction chamber for detonation 

sparker 
plate 

1 6.5 copper clad FR4, 
stainless steel

produce oxyhydrogen by electrolysis 
ignite oxyhydrogen to power takeoff

balance 
beam 

4 2 titanium maintain robot stability on water surface; 
reduce body rotation during takeoff

buoyancy 
outriggers 

4 2 carbon fiber, 
polyimide

increase buoyancy ; 
improve underwater stability 

  8 - 15 Loctite 416, epoxy Securely attach robot parts 
 
 
 
 
 
 
  



 
 

Table S2. Model parameter values 
 

 

 

 

  

 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Symbol Parameter name Value 

 ௧ top plate area 94 mm2ܣ

 ௪ wetted area 180 mm2ܣ

 water viscosity 1.002 mN s / m2 ߤ

 water kinematic viscosity 1.004 mm2 / s ߥ

 ஽ robot drag coefficient 1ܥ

 soapy water surface ߛ

tension coefficient 

24.3 mN / m 

 balance beam length 20 mm ܮ

݉ robot mass 170 mg 

݃ gravitational acceleration 9.8 m/s2 



 
 

Supplementary movies 

Movie S1  Demonstration of robot aerial hover. The video shows hovering demonstrations of a 175 mg 
robot before and after impulsive takeoff. The robot flaps its wing at 265 wingbeats per second.  
 
Movie S2. Demonstration of robot air-water transition. The video shows that surfactant lowers surface 
tension and facilitates robot water entry. A robot without surfactant cannot break the water surface (left). A 
robot coated with surfactant is dropped onto the water surface from 2 cm (center) or 10 cm (right). The robot 
sinks to the aquarium bottom while maintaining upright stability.    
 
Movie S3. Demonstration of robot swimming and emergence of robot wing from the water surface. 
The video shows the robot swimming to the water surface and then slowly pushing out its wings by 
capturing the gas produced from electrolysis.  
 
Movie S4. Demonstration of robot impulsive takeoff and landing. The video shows a robot stably lands 
on the ground after impulsive takeoff. Part 1 shows a zoomed-out video taken at 30 frames per second. Part 
2 shows a high-speed video of the same experiment taken at 9500 frames per second. 
 
Movie S5. Comparison of robot underwater stability with different flapping frequencies. The first part 
of the video compares the previous robot design operating at 5 Hz (left) versus 11 Hz (right) in water. The 
robot is unstable and plunges downward when operated at 5 Hz. When flapping frequency increases to 11 
Hz, the robot becomes stable and swims upward to the water surface. The second part of the video shows the 
new robot swimming at 9 Hz. The new robot design maintains stability at its resonant flapping frequency.  
 
Movie S6. Comparison between robot swimming experiment and simulation. The video compares 
experiment (left) and dynamical simulation (right) of a robot operated at 11 Hz in water. Both simulation 
and experiment show the robot is passively upright stable during ascent.  
 
Movie S7. Measurement of surface tension force on a robot during water-to-air transition. The video 
shows a force measurement experiment as a robot is gradually pulled out of soapy water. The discontinuities 
of the force trace correspond to the time when robot balance beams pop out of water. The net surface tension 
force is given by the magnitude of these discontinuities and exceeds robot maximum lift by 2.1 times.   
 
Movie S8. Comparison of robot takeoff with or without micro-openings on gas collection chamber. 
The video shows the influence of chamber micro-openings on robot takeoff. Part 1 compares the takeoff of 
two chambers that weigh 170 mg. The chamber without micro-openings (left) is blown into multiple pieces 
whereas the chamber with micro-openings (right) remains intact. Part 2 shows the side and perspective view 
of robot takeoff for the case of no mirco-openings. The chamber cracks open and a robot wing and balance 
beam are blown apart. Part 3 shows the side and perspective view of robot takeoff for the case with 
micro-openings. The robot experiences very small body rotation and no structural damage.  
 
Movie S9. Detonation pressure measurement and robot takeoff. The video shows detonation pressure 
measurements during robot takeoff. A robot without micro-openings on its gas collection chamber (left) 
experiences larger detonation pressure and lower takeoff speed. The fully sealed chamber is reinforced such 
that it survives the detonation. A robot that has micro-openings on its gas collection chamber (right) 
experiences smaller detonation pressure and higher takeoff speed. 

.




